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For an electrical railway overhead wire system there are two main factors which
crucially affect the quality of current collection. One is the spatial stiffness
variation of the overhead wire along each span and the other is the flexural wave
motion in the wire. In this paper a periodically excited single-degree-of-freedom
(SDOF) model of a combined pantograph–catenary system is introduced and its
basic dynamic behaviour is discussed. To investigate the effect of wave
propagation in the overhead wire on vibration of the pantograph the dynamic
stiffness of the catenary is introduced into the model. The dynamic stiffness of the
catenary is determined by representing the overhead wire system as an infinite
periodically spring-supported string. The results show that the dynamic stiffness
of the catenary varies with train speed and its effect on the performance of the
pantograph–catenary system is discussed.
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1. INTRODUCTION

High-speed electrical railway systems are competitive with airlines for relatively
short journeys. However, at high-speeds one of the main problems for electric
railways is the maintenance of smooth, continuous current collection. This task
is accomplished by a pantograph mounted on the locomotive roof which is in
contact with an overhead wire (catenary). Unfortunately, as operational train
speeds increase, vibration of the pantograph and overhead wire also increases.
This may lead to a zero contact force between the pantograph and the catenary,
resulting in loss of contact, arcing and wear. A recent review paper discussing the
state of the art of pantograph/catenary systems has been presented by Poetsch
et al. [1].
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The pantograph and the catenary together form a dynamically coupled
vibrating system affecting each other through the contact force. The main source
of vibration is the spatial stiffness variation of the catenary along the span [2]; in
the middle of a span the stiffness of the catenary is minimum and near the support
tower it is maximum. When the pantograph moves along the catenary, the stiffness
variation produces a periodic excitation which leads to vibration of the
pantograph and fluctuation of the contact force. In addition, as the pantograph
head (panhead) moves along the catenary, it causes a flexural wave motion in the
wire. This flexural wave propagation also affects the contact force and the motion
of the pantograph.

The dynamic interaction of the pantograph and the catenary has been studied
extensively. An approximate analytical formulation to determine the contact force
has been presented by Ockendon and Taylor [3]. Vinayagalingam [4] studied the
contact force variation and the panhead trajectory by using finite difference
methods, and Wu [5] developed a finite element model of the pantograph–catenary
system to study the current collection problem by numerical simulation. Wormley
et al. [6] obtained the free vibration modes of the overhead wire system and the
contact force by using the Rayleigh–Ritz and modal analysis methods,
respectively. Yagi et al. [7] investigated the dynamic response of the
pantograph–catenary system to the lateral movement of the overhead wire due to
its zigzag layout.

Although different aspects of the pantograph–catenary system’s dynamics have
been studied, a comprehensive analytical model of this coupled system has not
been reported so far. Some researchers have tried to obtain a better understanding
of the system’s dynamic behaviour by using a relatively simple model. A
periodically excited single-degree-of-freedom (SDOF) model representing the basic
dynamics of the combined pantograph–catenary system has been proposed by Wu
and Brennan [8]. This model is simple and retains most of the basic dynamic
properties of the system. However, the catenary was modelled as a massless
spatially fluctuating static stiffness, and hence wave propagation in the catenary
was neglected. Manabe [9] used wave analysis to study the response of a catenary
with discrete support springs to a travelling constant load which represents a
pantograph. It is clear from this work that the dynamic displacements of a
catenary subjected to a moving load will vary with the speed of the load and thus
the dynamic stiffness of the catenary should be considered in a comprehensive
study of pantograph–catenary dynamics. A comprehensive theory of the effect of
moving loads on structures can be found in Frýba’s book [10].

The aim of this paper is to obtain a better understanding of the
pantograph–catenary system dynamics. Although complicated models and
numerical methods are useful to obtain some specific solutions, a relatively simple
analytical model is more appropriate to gain the physical insight into the
pantograph–catenary system. Essentially, Wu and Brennan’s model [8] is
improved upon by introducing the dynamic stiffness of the catenary and the effects
of this on the performance of the pantograph–catenary system are investigated.
The paper is organised in six sections. Following the introduction, the periodically
excited SDOF model of the pantograph–catenary system is presented in
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section 2. In section 3 the overhead wire system is simplified to an infinite
periodically spring-supported string, and its dynamic response to a moving load
is investigated using a semi-analytical method based on Floquet’s theory. In
section 4 a more precise description of the pantograph–catenary system’s dynamic
properties is achieved by using the dynamic stiffness of the catenary. Before
concluding the paper two numerical examples are presented in section 5, one for
a mid-speed and one for a high-speed railway.

Because the target of this paper is to study the interaction between the
pantograph and the catenary, some factors such as initial sag of the catenary,
fundamental excitation of the locomotive roof and aerodynamic force to the
pantograph are not included in the analysis.

2. INTERACTION OF THE PANTOGRAPH AND THE CATENARY

In this section Wu and Brennan’s model for the pantograph–catenary system
dynamics [8] is briefly reviewed. This is included in this paper to introduce the
concept of a combined pantograph–catenary system and to show the fundamental
excitation mechanism.

2.1.      

A picture of a real pantograph–catenary system is shown in Figure 1 and
schematic diagrams of two types of catenary are shown in Figure 2. The compound
catenary is used for high-speed trains (usually above about 200 km/h) and the
simple catenary for mid-speed trains (usually below about 150 km/h). Because the
compound catenary is more complicated, it is more expensive than the simple
catenary. The Finite Element Method (FEM) can be used to calculate the static
stiffness of the catenary [2] and Figure 3 shows the static stiffness variation in a
single span for the two types of catenary. The tensions used in the calculations

Figure 1. A pantograph–catenary system in operation.
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Figure 2. Two types of catenary system: (a) compound catenary; (b) simple catenary.

are typical of practical installations and are given in reference [11]. It can be seen
that the stiffness fluctuation of the compound catenary is far smaller than that of
the simple catenary and, as will be shown later, this enables a higher operational
train speed.

2.2.    – 

The modelling procedure is shown schematically in Figure 4. In Figure 4(a) the
upper mass M1 represents the panhead, and the lower mass M2 represents the
equivalent inertia of the pantograph frame. K1 and C1 represent the stiffness and
the damping between the head and the frame, respectively, and C2 represents the
damping between the frame and the base. FL is the uplift force which is produced
by air pressure or spring loading and may be regarded as constant. If the mass
of the catenary is neglected and K1 is much greater than the stiffness of the
catenary, then the model can be simplified to a SDOF model. This is shown in

Figure 3. Static stiffness of contact wire in a span: (a) compound catenary T1 =24·5 kN,
T2 =T3 =14·7 kN; (b) simple catenary T1 =T2 =9·8 kN.
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Figure 4. Model of the pantograph–catenary system.

Figure 4(b) where the time-varying stiffness K(t) represents the catenary, and
M=M1 +M2 represents the dynamic mass of the whole pantograph. The
equation of motion describing the SDOF model in Figure 4(b) is

Mÿ+Cẏ+K(t)y=FL . (1)

If we omit the stiffness variation between the vertical droppers and consider a
train travelling with constant speed V, then K(t) can be written as

K(t)=K001− a cos
2pV
L

t1 , (2a)

where L is the length of one span and

K0 =
Kmax +Kmin

2
, a=

Kmax −Kmin

Kmax +Kmin
, (2b, c)
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where Kmax and Kmin are the largest and smallest stiffness in a span, respectively.
K0 and a can be regarded as the average stiffness and the stiffness variation
coefficient, respectively. If we set v2

n =K0/M and v=2pV/L, where vn is defined
as the nominal natural frequency of the pantograph–catenary system and v is the
frequency of the stiffness variation which is related to train speed and the length
of a span, then equation (1) can be written as

ÿ+
C
M

ẏ+v2
n (1+ a cos vt)y=

FL

M
. (3)

This equation can be non-dimensionalised by letting t=vnt to give

d2y
dt2 +2z

dy
dt

+(1+ a cos tt)y= f, (4)

where

2z=
C

vnM
, r=

v

vn
=

2pV
vnL

, f=
FL

K0
.

Equation (4) can be recognised as the forced, damped Mathieu equation [12].
Two parameters determined the dynamic behaviour of the pantograph–catenary
system. They are a which represents the stiffness variation of the catenary, and r
which is related to the speed of the train, the span length and the nominal natural
frequency of the system. By examining equation (4) we can determine the
behaviour of the pantograph–catenary system.

2.3.    

Since equation (4) represents a parametrically excited system, its stability
boundaries which are dependent upon a, z and r should be determined first.
According to the data in reference [11], for a compound catenary the stiffness
variation coefficient a is about 0·3 and for a simple catenary a it is about 0·6.
Current operational train speeds are below 500 km/h, so the coefficient r is less
than 1·5. The stability boundaries of the pantograph–catenary system described
by equation (4) can be obtained by using Floquet’s theory [12] and the results are
shown in Figure 5. Three unstable areas occur in regions around r=2/3, 1 and
2, and they are dependent upon damping. As a realistic damping coefficient for
the pantograph is generally greater than 0·02, a practical pantograph–catenary
system will probably not suffer from instabilities. Therefore, the loss of contact
between the pantograph and the catenary at higher speeds will be caused by
normal vibration of the pantograph rather than unbounded or unstable vibration.

2.4.     

An approximate analytical solution to equation (4) can be obtained by using
the perturbation method. It has been shown that the transient response vanishes
with increasing time [13], thus it is only necessary here to study the steady-state
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response. A fourth order approximate steady-state response to a constant uplift
force is given as follows [8]:

y= y0 + ay1 + a2y2 + a3y3

=f 61−
a

zR1
6cos (rt−81)−

a

2 $cos 81 +
1

zR2

cos (2rt−81 −82)%
−

a2

4 $2 cos 81

zR1

cos (rt−81)+
1

zR2
$ 1

zR1

cos (rt−281 −82)

+
1

zR3

cos (3rt−81 −82 −83)%%77, (5)

where

R1 = (1− r2)2 + (2zr)2, 81 = tan−1 2zr
1− r2 , (6a)

R2 = (1−4r2)2 + (4zr)2, 82 = tan−1 4zr
1−4r2 , (6b)

R3 = (1−9r2)2 + (6zr)2, 83 = tan−1 6zr
1−9r2 . (6c)

Figure 5. Stable and unstable regions of the pantograph–catenary system.----, z=0; · · · · · · ·,
z=0·01; –––, z=0·02.
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Figure 6. Maximum and peak-to-peak normalised contact forces, z=0·1 and f=1: (a) a=0·3;
(b) a=0·6. ----, Maximum contact force; –·–·, peak-to-peak contact force.

The steady-state response of the pantograph–catenary system to the constant
uplift force consists of a DC component and some harmonic motion with a
dominant component having frequency r. The response is a maximum when r is
close to 1/3, 1/2 and 1. By multiplying the displacement y(t) by the instantaneous
stiffness K(t) the contact force can be determined.

The peak-to-peak and maximum normalised contact forces are plotted in
Figures 6(a) and (b) for a=0·3 and 0·6, respectively. For a high-speed railway
system r=1 corresponds to approximately 420 km/h and for a mid-speed railway
system r=1 corresponds to about 380 km/h. It can be seen that the stiffness
variation coefficient a of the catenary in a single span has a significant effect
because it is the source of the parametric excitation. As a reduces, so does the
variation in contact force. When the peak-to-peak graph exceeds the maximum
graph, the minimum contact force will be zero and loss of contact and subsequent
current interruption will occur. Thus, the speed corresponding to the first
cross-over point of the maximum and peak-to-peak contact force graphs
represents upper limits for the operational speeds of trains. For a compound
catenary (a=0·3) the highest operational speed is governed in the area near r=1
and for a simple catenary (a=0·6) in the area near r=1/3. Increasing the stiffness
of the catenary or/and decreasing the mass of the pantograph will be beneficial
since this will raise the system’s nominal natural frequency.

3. DYNAMIC STIFFNESS OF THE OVERHEAD WIRE SYSTEM

Since the catenary in the model discussed above is treated as massless, the effect
of the flexural wave propagation in the wire on the pantograph is omitted. If one
still wants to take advantage of this model to predict the dynamic behaviour of
the pantograph–catenary system, the dynamic stiffness of the catenary should be
used instead of the static stiffness. The dynamic stiffness of the catenary is defined
as the ratio of the load to the displacement caused by this load. However, this load
travels along the catenary with a steady speed, and in this case the displacement
of the catenary will vary when the moving speed of the load changes. Therefore,
prior to investigating the dynamics of the pantograph–catenary system, the
dynamic response of the catenary to a moving load should be studied first.
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3.1.       

The first order natural frequency of the overhead system is usually lower than
and near to 1 Hz [6] and the corresponding wavelength is equal to twice of the
span length. In low frequency vibration modes each catenary of the overhead
system moves in phase and the wavelength is much longer than the dropper span.
Thus, if the higher frequency vibration is neglected, the overhead system may be
regarded as one uniform string with elastic supports. A simplified model of the
overhead wire system is shown in Figure 7, which has been studied previously by
Manabe [9]. It is an infinite periodically spring-supported string, where T and r

are the tension and the density of the string respectively, L is the span length, KS

represents the elastic supports of the string and F is a travelling load with a steady
speed V. First, some important factors such as T, r and KS in this model should
be determined according to the parameters of a real catenary system.

In general T, r and KS may be determined approximately as follows:

T= s
n

i=1

Ti , r= s
n

i=1

ri , KS =Kmax −
2T
L

, (7a, b, c)

where Ti and ri are the tension and the density of the ith catenary in the overhead
wire system respectively, Kmax is the maximum static stiffness in a span. To validate
the approximations in equations (7a, b, c) compare the static stiffness and the
natural frequencies of the simplified model with those of the original catenary
model shown in Figure 2. The results are obtained using the FEM and only three
spans have been included for simplicity. Although the boundary conditions at the
ends of the first and third spans affect the results, it is very limited. This is because
a single span is 50–60 m long and the middle span is less affected by the boundary
conditions. Furthermore, the aim of calculation is to validate the simplified model,
and both the original model and the simplified model are calculated with the same
number of spans. The static stiffness of two types of catenary is shown in Figure
8, and it can be seen that the results of two models are very close to each other.
The natural frequencies of the first 12 modes for compound and simple catenaries
are listed in Tables 1 and 2, respectively. It can be seen that the low order natural
frequencies of the simplified model are generally lower than those of the original
model. The reason for this is that the freedom of motion of each catenary in the
original model is gradually reduced from the bottom to the top, but in the
simplified model there is only one catenary which has as much freedom of motion

Figure 7. Simplified model of the overhead wire.
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Figure 8. Static stiffness of the catenary: (a) compound catenary; (b) simple catenary. ----,
Simplified model; – – –, original model.

as the lowest single catenary in the original model, thus leading to lower natural
frequencies.

3.2.        

Analysis of the dynamic response of an infinite periodic structure to a moving
load can be treated in various ways. One approach is by means of the Fourier
transform using Floquet’s theory and considering only one unit of the periodic
structure. Smith and Wormley [14] studied the response of a continuous
periodically pin-supported beam to a moving load at constant speed using this

T 1

Natural frequencies of the compound catenary (Hz)

Modes 1 2 3 4 5 6

Simplified model 0·6748 0·9143 1·1148 1·6219 1·9528 2·2289
Original model 0·9356 1·0523 1·1261 1·8505 2·0730 2·2354

Modes 7 8 9 10 11 12

Simplified model 2·6813 3·0349 3·3414 3·7691 4·1300 4·4516
Original model 2·7633 3·0555 3·3087 3·7004 4·0134 4·3166

T 2

Natural frequencies of the simple catenary (Hz)

Modes 1 2 3 4 5 6

Simplified model 0·8787 1·0013 1·0784 1·8031 2·0618 2·1561
Original model 0·9886 1·0370 1·0632 1·9745 2·0712 2·1247

Modes 7 8 9 10 11 12

Simplified model 2·7795 3·0484 3·2322 3·7915 4·0913 4·3062
Original model 2·9554 3·1002 3·1832 3·9298 4·1211 4·2367
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Figure 9. Dynamic response of a simple catenary to a moving load, zc =0·02, T=20 kN,
L=50 m, KSL/T=12·5 and F=100 N.

method. The same methodology is used in this paper but for a periodically
spring-supported string subjected to a moving load.

The equation of motion and the boundary conditions for the model shown in
Figure 7 are

12y
1t2 + h

1y
1t

− c2 12y
1x2 =

F
r

d(x−Vt), (8a)

y(nL−, t)= y(nL+, t), (8b)

KSy(nL, t)=Ty'(nL+, t)−Ty'(nL−, t), (8c)

where y' represents the derivative of y with respect to x, n is an integer denoting
the nth support, L− and L+ denote the left and the right segments of the span at
a support point, respectively, h denotes viscous damping and c=zT/r is the
propagating wave speed in the string.

Introducing the following Fourier transforms:

y(x, t)=
F

2pr g
+a

−a

Y(x, k) eik(x−Vt) dk, (9)

d(x−Vt)=
1
2p g

+a

−a

eik(x−Vt) dk, (10)

where Y(x, k) is the transform of y(x, t), i=z−1 and k is the wave number, then

1y
1t

=
F

2pr g
+a

−a

−ikVY(x, k) eik(x−Vt) dk, (11a)
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1y
1x

=
F

2pr g
+a

−a

[Y'(x, k)+ ikY(x, k)] eik(x−Vt) dk, (11b)

12y
1t2 =

F
2pr g

+a

−a

−k2V2Y(x, k) eik(x−Vt) dk, (11c)

12y
1x2 =

F
2pr g

+a

−a

[Y0(x, k)+2ikY'(x, k)− k2Y(x, k)] eik(x−Vt) dk. (11d)

The steady-state response profile of the catenary to a moving load at constant
speed is periodic with spacing L, and every span undergoes identical displacements
with only a time delay of L/V, that is

y(x+ nL, t+ nL/V)= y(x, t). (12)

Thus, using Floquet’s principle the transform Y(x, k) is periodic with respect to
the spatial co-ordinate x:

Y(x+ nL, k)=Y(x, k), (13)

and therefore

Y(nL+, k)=Y(0, k), Y(nL−, k)=Y(L, k), (14a, b)

Y'(nL+, k)=Y'(0, k), Y'(nL−, k)=Y'(L, k). (14c, d)

Substituting equations (9)–(11) and (14) into equation (8) gives the following
equations in the wave number domain:

Y0(x, k)+2ikY'(x, k)+$k2(b2 −1)+ ikb
h

c%Y(x, k)=−
1
c2 , (15a)

Y(0, k)=Y(L, k) (15b)

KSY(0, k)=TY'(0, k)−TY'(L, k), (15c)

where b=V/c. The solution to equation (15a) is given as follows:

Y(x, k)=A e−i(k+ s)x +B e−i(k− s)x +
1/c2

k2(1− b2)− ikb
h

c

, (16)

where s=zk2b2 + ikbh/c . If the non-dimensional quantities x̄= x/L, k�= kL,
s̄= sL and h=2pzcc/L are introduced, then equations (16), (15b) and (15c) can
be rewritten as

Y(x̄, k�)=A e−i(k�+ s̄)x̄ +B e−i(k�− s̄)x̄ +
L2/c2

k�2(1− b2)− i2pzck�b
, (17a)

Y(0, k�)=Y(1, k�), (17b)

KSY(0, k�)=TY'(0, k�)−TY'(1, k�), (17c)
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where zc is the damping ratio (when zc =1, the first order mode of a string with
two fixed ends is critically damped). The complex wave amplitudes A and B can
be determined using the boundary conditions (17b) and (17c) and thus the final
result for Y is given by:

Y(x̄, k�)=
L2

c2(k�2 − s̄2) $1− i
e−ik�x̄ sinh is̄(1− x̄)+ eik�(1− x̄) sinh is̄x̄
2T
KSL

s̄(cosh k�−cosh is̄)+ i sinh is̄ % , (18)

where s̄=zk�2b2 + i2pzck�b.
The response of the catenary to a moving load can be obtained by performing

the integration given in equation (9). In order to determine the dynamic stiffness
of the catenary, only the response at the point where the moving load is applied
need be calculated. This point is at x=Vt, so the integration can be simplified
to

yx=Vt =
F

2prL g
+a

−a

Y(x̄, k�) dk�. (19)

For performing the integration the following points should be considered:
1. The real part of Y�(x̄, k�) is even and the imaginary part is odd, so only one

side (k�e 0) needs to be integrated.
2. When the catenary is undamped, Y(x̄, k�) has an infinite number of poles.

Therefore, the numerical integration requires some damping to be introduced in
the model. If zc is too small, the result of the integration may be unstable even
though a tiny step size is employed in performing the integration.

3. Numerical integration requires a finite interval of integration. Considering
both accuracy and efficiency the integration is performed over the range of k�E 40,
and a step size of Dk�=0·02 is taken.

It can be proved using (18) that if the catenary is undamped, Y(x̄, k�) and hence
yx=Vt will be symmetrical with respect to the middle of a span.

Figure 9 shows the dynamic response of a simple catenary to a moving load,
where typical parameters have been chosen, for example, zc =0·02, T=20 kN,
L=50 m, KSL/T=12·5 and F=100 N. For a compound catenary the value of
KSL/T is much smaller than that of a simple catenary, being about 3·5. The shape
of the dynamic response of a compound catenary is similar to that of the simple
catenary but much smoother, so the response graph for a compound catenary is
not presented here. When the speeds of the moving load are quite low (bQ 0·1),
the maximum displacement appears approximately in the middle of a span. In the
case of b=0 the graph shows the static displacement. From about bq 0·3 the
peak displacement appears in the downstream half of the span and moves towards
the support end with increasing the speed of the moving load. When the speeds
of the moving load are close to the propagating wave speed in the wire (b:1),
the dynamic displacements increase dramatically, as can be seen in Figure 9. The
local maximum displacements appear in the area from b=0·34 to 0·55.
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Figure 10. Dynamic stiffness of a simple catenary.

3.3.       

From the data used in Figure 9 the dynamic stiffness can be obtained by dividing
the moving load by the dynamic displacement caused by this load. Figure 10 shows
the dynamic stiffness. It can be seen that the dynamic stiffness varies with the speed

Figure 11. Variation of the dynamic stiffness: (a) and (b) for a simple catenary, where zc =0·02,
T=20 kN, L=50 m, KSL/T=12·5; (c) and (d) for a compound catenary, where zc =0·02,
T=50 kN, L=50 m, KSL/T=3·5.
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Figure 12. Maximum and peak-to-peak contact forces of a mid-speed railway: (a) using the static
stiffness; (b) using the dynamic stiffness. ----, Maximum contact force; –·–·, peak-to-peak contact
force.

of the moving load and in general, decreases with increasing the speed from about
b=0·3. There are some dramatic increases of the dynamic stiffness near the
support when b=0·3–0·6. The effect of the dynamic stiffness variation on the
pantograph–catenary system dynamics will be discussed in the next section.

4. DYNAMIC BEHAVIOUR OF THE PANTOGRAPH–CATENARY SYSTEM
CONSIDERING THE DYNAMIC STIFFNESS OF THE OVERHEAD WIRE

4.1.         

Although the simple model discussed in section 2 is still useful, it is evident that
for a more accurate model the time-varying static stiffness K(t) should be replaced
by the dynamic stiffness. Referring to equation (2) K0 and a can be replaced by
the average dynamic stiffness and the dynamic stiffness variation coefficient,
respectively. These are calculated using equation (2) but the dynamic stiffness
shown in Figure 10 rather than the static stiffness is now used to determine these
values. Figure 11 shows the calculated values of K0 and a. Figures 11(a) and (b)
represent the simple catenary and Figures 11(c) and (d) represent the compound
catenary. It can be seen that both the average dynamic stiffness and the dynamic
stiffness variation coefficient are roughly constant when the speed ratio bQ 0·2.
After that there are several sharp peaks at about b=0·32 and 0·5 for the simple
catenary and one sharp peak at about b=0·25 for the compound catenary and
then they both gradually decrease with some small peaks. Therefore, the overhead
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wire appears softer and has a larger ‘‘static’’ displacement when train speed
increases, and the magnitude of the forcing function decreases.

4.2.    ’      –
  

Since the model described by equation (4) remains valid, the formats of Figures
5 and 6 are still useful in the analysis of the dynamic behaviour of the
pantograph–catenary system, but now the dynamic rather than the static stiffness
of the catenary has to be used. However, because the dynamic stiffness varies with
train speed, it will lead to some differences in the interpretation of the dynamic
behaviour of the system by using these figures. Compared with the case of using
the static stiffness, the effects of the dynamic stiffness variation on the dynamic
behaviour of the pantograph–catenary system may be summarised as follows:

1. The system’s nominal natural frequency vn is no longer constant. It varies
with the train’s travelling speed. In general it will decrease with increasing train
speed because the average dynamic stiffness of the catenary decreases when the
non-dimensional speed of the train increases above about b=0·2 except some
stiffness peak areas. This will have a detrimental effect on the dynamic
performance of the pantograph–catenary system because a specific value of r now
corresponds to a lower train speed in Figures 5 and 6.

2. The dynamic stiffness variation coefficient a decreases with increasing the
speed of the train from b=0·5 for the simple catenary and b=0·3 for the
compound catenary, and this has a beneficial effect on the system’s performance.

3. The damping ratio z of the system is also not constant. It rises when train
speed increases because the system’s nominal natural frequency vn decreases with
increasing train speed. This will also have a beneficial effect on the system’s
performance.

4. Regarding the pantograph–catenary system’s stability boundaries, Figure 5
is still valid, but the way of using this figure is slightly different. Since the system’s
nominal natural frequency decreases with increasing train speed, the
corresponding speeds to three unstable areas, which occur in regions around
r=2/3, 1 and 2, will be lower than when the static stiffness of the catenary is
considered. Moreover, it should be noticed that other two factors, a and z, which
affect the system’s stability are now functions of train speed. Although the
dynamic stiffness of the catenary becomes softer with increasing train speed, the
pantograph–catenary system will still remain stable in the present speed range
because a decreases and z increases.

5. To analyse the dynamic contact force Figure 6 can still be used, but similar
factors to those discussed in point 4 above should be taken into consideration.
The maximum responses still appear close to r=1/3, 1/2 and 1, but the
corresponding speeds are now lower. Because a decreases and z increases with
increasing train speed, the dynamic contact force and its fluctuation gradually
reduce at higher speeds, compared to those predicted by the simple model using
only the static stiffness of the catenary.
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5. NUMERICAL EXAMPLES

The SDOF model discussed above that employs a dynamic stiffness of the
catenary is acceptable for the analysis of the basic dynamic behaviour of the
pantograph–catenary system. However, the accuracy of the results may be poor
because the dynamic stiffness K(t) has the form of equation (2), but in fact it is
not quite as simple as this in reality (see Figure 10). In addition the connection
between the head and the frame of the pantograph is regarded as rigid in the
SDOF model, but in reality there is an elastic suspension between them.

To obtain more accurate results two numerical examples are calculated. One
represents a mid-speed railway and the other a high-speed railway. The
pantographs of two systems are the same and are represented by the 2DOF model
shown in Figure 4(a). The following parameters are employed for the pantograph:
M1 =8 kg, M2 =12 kg, K1 =10 kN/m, C1 =120 Ns/m, C2 =30 Ns/m,
FL =100 N.

The catenaries of the two systems have different parameters. The parameters for
the mid-speed railway system are: T=20 kN, r=1·685 kg/m, L=50 m,
KSL/T=12·5, zc =0·02. The parameters for the high-speed railway system are:
T=50 kN, r=4·336 kg/m, L=50 m, KSL/T=3·5, zc =0·02. The static and
dynamic stiffness K(t) of the catenary is represented by a series of discrete values
obtained using the procedure discussed in section 3.

The numerical simulation results for the contact force are obtained using the
4th order Runge–Kutta method. Figures 12 and 13 show the contact force in the
form of peak-to-peak and maximum values at different operational speeds.

Figure 13. Maximum and peak-to-peak contact forces of a high-speed railway: (a) using the static
stiffness; (b) using the dynamic stiffness. ----, Maximum contact force; –·–·, peak-to-peak contact
force.
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Figure 12 is for the mid-speed railway and Figure 13 for the high-speed railway.
Figures 12(a) and 13(a) show the results when the static stiffness of the catenary
is used and, Figures 12(b) and 13(b) show the results when the dynamic stiffness
of the catenary is used. Compared with the results of the SDOF model, some main
points may be summarised as follows.

The graphs in Figures 12 and 13 also have three peak values of the dynamic
response approximately corresponding to r=1/3, 1/2 and 1. This means that the
SDOF model can adequately describe the basic dynamic behaviour of the
pantograph–catenary system.

There are some other small local peaks of the dynamic response for the
mid-speed railway. The reason for this is that there are some peak values at certain
train speeds for the dynamic stiffness fluctuation coefficient a which affects the
dynamic response significantly. The most noticeable peak is at about 195 km/h
which corresponds to speed ratio b=0·5 where a has a sharp peak value.

The main peak responses of the 2DOF model using the static stiffness of the
catenary either for the mid-speed railway or for the high-speed railway appear at
lower speeds, compared with the SDOF model (in the case of SDOF model the
main peak responses appear at about 380 and 420 km/h for the simple and
compound catenaries, respectively). There are two reasons for this. One is that the
connection between the head and the frame of the pantograph is elastic in the
2DOF model instead of rigid in the SDOF model. This will lead to a lower natural
frequency of the system and hence a lower corresponding speed when r=1. The
other reason is that the average stiffness of the catenary in the SDOF model, which
is used for calculating system’s nominal natural frequency by the equation
v2

n =K0/M, is a simple mean value (see equation (2b)), but in fact the stiffness of
the catenary has a much lower value at most places in a span and only rises to
its maximum value near the support point (see Figure 8(b)).

When using the dynamic rather than static stiffness of the catenary, the response
graphs (shown in Figures 12(b) and 13(b)) are shifted towards a lower speed,
compared with those when the static stiffness is used in the model (shown in
Figures 12(a) and 13(a)). This characteristic has already been predicted in section
4 (see point 5 in section 4.2) and now is validated in the 2DOF model.

From Figure 13 for the high-speed railway it can be seen that the maximum
contact force is always greater than the peak-to-peak contact force when the
dynamic stiffness of the catenary is used in the model. This means that the contact
force is always positive and thus loss of contact will not occur. The reason for this
is that a decreases and z increases with increasing train speed. This has a beneficial
effect on the system’s performance and was discussed for the SDOF model in
section 4.

6. CONCLUSION

In this paper the dynamic behaviour of a pantograph–catenary system has been
studied. First a periodically excited SDOF model for the pantograph–catenary
system was introduced and its basic dynamic behaviour was discussed. To
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investigate the effect of the wave propagation in the overhead wire on vibration
of the pantograph the dynamic stiffness of the catenary has to be introduced into
the SDOF model of the combined pantograph–catenary system. The dynamic
stiffness of the catenary was determined by representing it as an infinite
periodically spring-supported string.

The results have shown that the dynamic stiffness of a catenary varies with train
speed. There are some speeds at which the dynamic stiffness increases dramatically
near the support points of the catenary. Except for these speeds, it appears softer
and its variation in a span decreases with increasing train speed. This means that
the nominal natural frequency of the pantograph–catenary system also varies with
train speed and reduces with increasing the speed. It has been shown that this may
have a detrimental effect on the performance of the pantograph–catenary system,
but because the dynamic stiffness variation decreases with increasing train speed,
there may also be some positive effects.

Finally, two numerical examples of a 2DOF model of a pantograph–catenary
system have shown that although the SDOF model can give physical insight into
the dynamic behaviour of the pantograph–catenary system, it is not as accurate
because the average stiffness K0 in the model is too simple a representation.
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